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the genetic architecture of desirable traits. We conclude 
that GS has the potential to significantly improve the effi-
ciency of selection for essential oil yield.

Introduction

Essential oils are a diverse group of around 3000 natural 
plant products, of which about 300 are traded commercially 
for purposes such as flavourings, cosmetics, pharmaceuti-
cals, aromatherapy and solvents. They are typically com-
posed of a mix of volatiles (mostly terpenoids) and aro-
matics, often dominated by one or two major compounds. 
A wide variety of oil-bearing plant species, ranging from 
herbs and grasses to trees, are cultivated in plantations or 
harvested from wild stands in order to obtain essential oils 
for trade. Although a few essential oils have been extracted 
since the Middle Ages (Bakkali et al. 2008), until recently 
many cultivated species had undergone little selection and 
improvement for oil yield, especially when compared to 
major agricultural crops such as maize, wheat and fruits. 
Commercially important essential oil-bearing species 
include Orange, Cornmint, Lemon, Eucalyptus, Tea Tree, 
Peppermint, Citronella and Hop. Pharmaceutical-grade 
Eucalyptus oil, the 4th largest essential oil by annual ton-
nage (CBI Ministry of Foreign Affairs 2012), has only been 
distilled commercially since the 1850s (Pearson 1993). The 
market for Eucalyptus oil became globally competitive 
during the 20th century due to the large-scale extraction 
of leaf oil as a by-product of wood and pulp production in 
China, South Africa and Brazil. Given the highly competi-
tive nature of the essential oils market, in which uses for 
oils shift regularly and demand and supply can fluctuate 
rapidly, improvements in oil yield can be of great benefit to 
producers.

Abstract  The yield of essential oil in commercially 
harvested perennial species (e.g. ‘Oil Mallee’ eucalypts, 
Tea Trees and Hop) is dependent on complex quantitative 
traits such as foliar oil concentration, biomass and adapt-
ability. These often show large natural variation and some 
are highly heritable, which has enabled significant gains 
in oil yield via traditional phenotypic recurrent selection. 
Analysis of transcript abundance and allelic diversity has 
revealed that essential oil yield is likely to be controlled by 
large numbers of quantitative trait loci that range from a 
few of medium/large effect to many of small effect. Molec-
ular breeding techniques that exploit this information could 
increase gains per unit time and address complications of 
traditional breeding such as genetic correlations between 
key traits and the lower heritability of biomass. Genomic 
selection (GS) is a technique that uses the information from 
markers genotyped across the whole genome in order to 
predict the phenotype of progeny well before they reach 
maturity, allowing selection at an earlier age. In this review, 
we investigate the feasibility of genomic selection (GS) for 
the improvement of essential oil yield. We explore the chal-
lenges facing breeders selecting for oil yield, and how GS 
might deal with them. We then assess the factors that affect 
the accuracy of genomic estimated breeding values, such as 
linkage disequilibrium (LD), heritability, relatedness and 
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For many selection and improvement programs, the pri-
mary goal is to increase the yield per unit area of the har-
vested product in a cost-effective manner. The expense of 
the breeding technique and labour must be at least offset 
by the longer-term gain in revenues (Luby and Shaw 2001; 
Heffner et  al. 2010). This economic equation has been 
balanced in recent decades with techniques such as mass 
selection and recurrent phenotypic selection on relatively 
small breeding populations. Studies and trials using molec-
ular techniques such as Marker-Assisted Selection (MAS) 
for essential oil traits are few. Byrne (2007) surveyed over 
150 perennial fruit and ornamental breeding programs from 
around the world to examine if and how they were mak-
ing use of molecular markers. Only 14 % of the trials were 
using MAS for research, and only 3 % were actively using 
markers to aid selection. The small scale of many breeding 
programs, lack of available markers and poor cost per unit 
gain relative to phenotypic selection were cited as the pri-
mary impediments to the use of molecular markers. In par-
ticular, Byrne (2007) noted that many of the crops included 
in his study had been recently domesticated and conse-
quently had high genetic variability—a situation in which 
phenotypic selection can be the quickest and least expen-
sive route to develop new cultivars. Although many essen-
tial oil crops are also likely to have high genetic variability, 
the cost effectiveness equation has steadily shifted further 
in favour of genetic markers since 2007 (Bernardo 2008), 
through rapid improvements in genetic technologies.

In addition to the perception that MAS is more expen-
sive than other methods, the use of MAS in selecting for 
complex quantitative traits in plants has some well-docu-
mented problems (Holland 2004; Hospital 2009). In short, 
MAS combines phenotypic and pedigree information with 
a priori knowledge of markers for specific genes, or quan-
titative trait loci (QTLs), associated with the trait of inter-
est. Individuals with the most favourable breeding values 
are selected using phenotypic data supported by genotype 
data for those key markers. It is the goal of the breeder, 
through crossing, to produce a new generation in which at 
least some individuals will contain the majority, or even 
all, of the favourable QTL alleles. The more QTLs that 
are included in the MAS process, the more progeny are 
required to ensure that at least some of those progeny will 
contain the majority of the favourable alleles. In order to 
keep the scale realistic and avoid the inclusion of false-
positive associations, only QTLs that are deemed to be 
highly significant (e.g. P < 0.0001) are used and the rest are 
culled. This has been shown to upwardly bias estimates of 
the effects of the chosen QTLs (Beavis 1994) and to cause 
breeders to miss out on the cumulative effects of many 
minor QTLs. In practice, most markers identified in can-
didate gene association studies in forest trees explain less 
than 5 % of the total variation of the trait, so for complex 

traits that are influenced by many QTLs of small effect 
MAS is often not particularly useful or cost-effective (Luby 
and Shaw 2001; Hospital 2009; Thavamanikumar et  al. 
2013).

Recent advances in the theory of Genomic Selection 
(GS) have generated renewed interest in using molecular 
markers for plant breeding. Genomic Selection involves the 
selection of favourable individuals based solely on the pre-
dictive value of genetic markers (Meuwissen et  al. 2001). 
The process involves two main stages. First, a training pop-
ulation (TP) is phenotyped and genotyped across the whole 
genome to develop a model of breeding value. Cross-vali-
dation techniques are often applied, where a subset of the 
training population is excluded from the process of esti-
mating parameters so their phenotypic values can be used 
to verify the model’s predictive accuracy. Second, a sepa-
rate breeding population (BP) is genotyped and the model 
derived from stage 1 is applied to estimate each individu-
al’s Genomic Estimated Breeding Value (GEBV) which is 
used for selection. The model of breeding value in the first 
stage is developed by simultaneously estimating the addi-
tive effect on the phenotype of every chromosomal segment 
of the genome that is bounded by the genotyped mark-
ers. GS enables selection to be applied before the mature 
phenotype is measurable, and the unit of selection is the 
allele rather than the line (Lorenz et  al. 2011). By avoid-
ing the need to wait for plants to mature before selection, 
GS can considerably shorten the selection cycle, decrease 
labour costs and increase the gain per unit time (Wong and 
Bernardo 2008; Heffner et  al. 2010). Also, by estimating 
effects for all available markers, GS can capture the effects 
of many small-effect QTLs, thus avoiding the problems of 
missing trait variance and biased QTL effects inherent in 
MAS. This aspect of GS is particularly powerful for the 
breeder—in a scientific context, the majority of marker 
effects would be rejected as statistically insignificant, but 
GS for breeding purposes presents no such restrictions.

When it was first proposed by Meuwissen et al. (2001), 
the feasibility of GS was questionable since the concept 
hinges on the ability to genotype many markers across the 
whole genome to ensure that all QTLs are in association 
with at least one proximate marker. The advent of high-
throughput SNP genotyping technologies, e.g. SNP chips, 
Genotyping-by-Sequencing (GBS) and whole-genome 
re-sequencing, has since lowered the barrier to high den-
sity, low cost genotyping. As a consequence, a variety of 
simulated and empirical GS studies have been performed in 
plants since 2007, with accuracies and genetic gains usually 
exceeding both phenotypic selection and MAS. The major-
ity of plant-based GS studies have taken place in highly 
inbred crops with large-scale breeding programs; maize 
(Zhao et  al. 2012; Massman et  al. 2013), wheat (Heffner 
et al. 2010), barley (Lorenzana and Bernardo 2009; Crossa 
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et al. 2010), cassava (Oliveira et al. 2012), apples (Kumar 
et  al. 2012), sugarcane (Gouy et  al. 2013) and sugar beet 
(Würschum et  al. 2013). Commercially important forest 
tree species such as Eucalyptus grandis (Resende et  al. 
2012a; Denis and Bouvet 2013), Picea glauca (Beaulieu 
et  al. 2014) and Pinus taeda (Resende et  al. 2012b) have 
also received attention to improve wood and growth traits. 
Genomic Selection in plants has been the subject of several 
reviews in the past few years in both forest tree breeding 
(Isik 2014) and more generally in plant breeding (Jannink 
et al. 2010; Lorenz et al. 2011; Nakaya and Isobe 2012).

Here we review the feasibility of genomic selection for 
the improvement of essential oil yield. We explore the chal-
lenges facing breeders when selecting for oil yield with tra-
ditional means and how GS might deal with them. We then 
assess the factors that affect the accuracy of genomic esti-
mated breeding values (GEBVs) such as Linkage Disequi-
librium (LD), heritability, relatedness between the training 
and breeding populations and the genetic architecture of 
desirable traits in order to determine if GS is a viable tech-
nique for increasing oil yield in certain essential oil species, 
with a focus on out-crossing perennials such as Eucalyptus, 
Tea Tree (Melaleuca sp.) and Hop (Humulus lupulus L.).

Selecting for essential oil yield

Essential oil yield is complex and comprises multiple quan-
titative traits (Doran et al. 2002) that should be accounted 
for during a selective breeding process. These traits 
include: (1) oil concentration per leaf; (2) biomass (leaf 
mass for some species; flowers, bark, wood or seeds for 
others); (3) broad adaptability to variable environments; 
and (4) resistance to pests and diseases. The first two traits 
form the basis of oil yield ‘per plant’, which combined 
with the other two traits forms the basis for overall yield 
per unit area of plantation. Additionally, the composition, 
or quality, of the oil is often critical to the selection pro-
cess in order to maintain levels of certain compounds at 
industry requirements. For Eucalyptus oil, at least 70  % 
(v/v) of the monoterpene 1,8-cineole is required for the oil 
to be classed as pharmaceutical grade (BP) along with a 

negligible amount of undesirables such as α-phellandrene 
(Coppen 2002). Tea tree oil quality is more complex as 
there are multiple known chemotypes, each with their own 
compound profile (Butcher et al. 1996; Keszei et al. 2010) 
but commercially valuable oil must contain >40  % (v/v) 
of terpinen-4-ol and <4 % (v/v) of 1,8-cineole. In hop, the 
essential oil accumulated in flower cones is used to impart 
flavour and aroma in beer, so hop cultivars are developed 
with varied oil concentration and profile in order to meet 
the requirements of the brewing industry. Finally, for those 
species that are continually harvested through coppicing 
(e.g. various Eucalyptus “oil mallees” and Tea Tree plants), 
the ability to regenerate rapidly after being harvested, and 
to produce consistent oil yield at the time of the next har-
vest is also critically important.

Despite its complexity, certain factors combine to pre-
sent a strong case for the potential for improving oil yield. 
Firstly, the lack of long-term selection or domestication 
in many oil-bearing species means that populations show 
great phenotypic variation in oil traits and contain a vast 
array of allelic diversity (Thumma 2005; Külheim et  al. 
2009; Goodger and Woodrow 2012; Webb et al. 2013). For 
example, the oil concentration in Eucalyptus polybractea 
(Blue Mallee) can range from 0.7 to 13 % of leaf dry weight 
(King et al. 2006), while in Melaleuca alternifolia (Medici-
nal Tea Tree) it ranges from 2.5 to 14.5 % of dry weight 
(Homer et al. 2000). Secondly, much of the observed vari-
ation in foliar oil concentration and composition has been 
shown to be moderately to highly heritable in a variety of 
species: Eucalyptus (Doran and Matheson 1994; Grant 
1997; King et al. 2004; Goodger and Woodrow 2012), Tea 
Tree (Butcher et al. 1996; Doran et al. 2002), Fennel (Izadi-
Darbandi et al. 2013) and Peppermint (Kumar et al. 2014) 
(Table  1). High heritability leads to increased accuracy 
of selection since much of the observed variation is due 
to genetic rather than environmental effects. Under these 
conditions, recurrent phenotypic selection has the power 
to generate large gains per selection cycle. Indeed this has 
been the case for various essential oil crops over the past 
decades. For example, five cycles of recurrent selection 
in Cymbopogon flexuosus (Lemongrass) increased mean 
oil concentration from 0.7 to 1.7 % (Kulkarni et al. 2003), 

Table 1   The narrow sense 
heritability (h2) of essential 
oil concentration (oil conc) 
and of biomass in a range of 
commercial crops

Species Common name h2 (oil conc) h2 (biomass) References

M. alternifolia Tea Tree 0.67 0.25 Butcher et al. (1996)

M. alternifolia Tea Tree 0.51–0.93 0.25 Doran et al. (2002)

M. piperita Peppermint 0.54 – Kumar et al. (2014)

E. polybractea Blue Mallee 0.36 0.05 Grant (1997)

E. camaldulensis River Red Gum 0.54 – Doran and Matheson (1994)

E. kochii Oil Mallee 0.83 – Barton et al. (1991)

H. lupulus Hop 0.37 0.03 Murakami (1999), McAdam et al. (2014)
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while in Carum carvi (Annual Caraway) mean oil concen-
tration increased from 3.4 to 7.4 % over 20 years of recur-
rent selection (Pank 2010). The Australian Tea Tree breed-
ing program has doubled commercial Tea Tree oil yield 
from 150   to 300  kg  ha−1 since 1993 through selection 
based on a weighted multi-trait index (Baker et al. 2014). 
Estimated gains from one cycle of selection for oil con-
centration in Eucalyptus species E. camaldulensis (Doran 
and Matheson 1994) and E. polybractea (Grant 1997) are 
around 30 %, though Goodger and Woodrow (2008) noted 
that in practice, trial plantations of E. polybractea often 
failed to achieve such gains due partly to large variation in 
open-pollinated half-sibling progeny.

Limitations of phenotypic selection for oil yield

Although phenotypic selection often performs well for 
quantitative trait improvement, it has its limitations. Nota-
bly long cycle times in perennial crops, large and costly 
progeny trials and difficulty selecting for multiple traits 
simultaneously can limit the gain per unit time and cost.

Long cycle times

The usual cycle time for selection in E. polybractea is 
3–5 years, in Tea Tree it is 3 years, while in E. camaldu-
lensis the time to first flowering averages around 14 years 
making the selection gain per unit time far smaller than is 
achievable in many annuals. For example, the significant 
oil yield gains made by the Australian Tea Tree breeding 
program (see above), operating since 1993, must be con-
sidered in the light of the commercial release of only three 
improved cultivars to date (Baker et  al. 2014). The long 
time to maturity also adds large costs to breeding programs 
for such species since a great number of trees must be nur-
tured, consuming resources and labour, only to later be 
culled at the point of selection.

Genetic correlations

To get the most benefit out of an essential oil breeding 
program, it is desirable to select for oil concentration, bio-
mass, oil composition, coppice ability and plant adaptability 
simultaneously. Genetic correlations, rg, can affect the accu-
racy and size of the gains that can be made for multiple traits 
with artificial selection. A negative correlation between two 
traits means that selection for one is likely to result in dete-
rioration in the other. Estimates of genetic correlations are 
often imprecise due to large sampling errors, and they are 
strongly influenced by allele frequencies and so may dif-
fer between populations (Falconer et  al. 1996). Neverthe-
less, various examples provide guidance on how selection 

gains in oil yield can be affected. In predictive studies of 
Tea Tree, Butcher et al. (1996) estimated rg = −0.42 for oil 
concentration and dry biomass, though recent results from 
two related seedling orchards (Baker et al. 2014) show wide 
variation in the genetic correlation between oil concentra-
tion and leafiness (rg = 0.624 at one site and rg = −0.246 at 
the other). Recurrent selection for oil concentration in this 
population might eventually lead to a reduction in total oil 
yield due to loss in biomass. Doran and Matheson (1994) 
also found a negative correlation for oil concentration and 
growth traits such as height (rg = −0.481) in E. camaldu-
lensis, though with a large standard error. In an E. polybrac-
tea progeny test, Grant (1997) found a small negative cor-
relation between oil concentration per leaf and leaf biomass 
of rg = −0.174. In hop, overall cone yield and essential oil 
concentration are highly important traits to breeders, but 
selection for cone yield may negatively affect total oil con-
tent due to significant negative correlation (Henning et  al. 
1997) and therefore make the development of certain high 
yield cultivars difficult.

Negative correlation between oil concentration and bio-
mass could occur if increased biosynthesis and accumula-
tion of terpenes has a high cost to the plant, leading to fewer 
resources being allocated to growth. On the other hand, 
increased biosynthesis and/or accumulation of terpenes may 
improve the plant’s defences against herbivores (Farmer 
2014), or be an indicator of natural selection for factors other 
than growth. For example, King et al. (2006) found that the 
accumulation of foliar oil was actually associated with bet-
ter growth in E. polybractea, but no evidence was found to 
suggest a mechanism of herbivory defence. It should be noted 
that in this latter study the correlation was measured in seed-
lings. It is possible that any positive correlation between oil 
concentration and growth disappears by maturity—the point 
at which phenotypic selection for oil content is most accurate.

Complex traits

Traits such as oil concentration and biomass are often con-
trolled by large numbers of genetic loci of small effect. Dif-
ferent individuals can exhibit similar phenotypes despite 
possessing very different sets of alleles at those loci. Pro-
ducing and detecting crossed progeny that possess favour-
able alleles across all loci is extremely difficult and many 
controlled crosses are needed, resulting in greater popula-
tion sizes and lower gain per unit cost.

Phenotyping

The process of phenotyping presents its own unique set of 
challenges that scale with the size of the breeding popula-
tion. Assessment of oil concentration and composition per 
individual plant using methods such as steam distillation 
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or solvent extraction followed by gas chromatography is 
costly and time-consuming. Estimating biomass based on 
growth traits and foliar measurements may be simpler but 
still requires significant labour per plant, while truly meas-
uring biomass (rather than making estimates) often requires 
the destruction of the plant itself.

Phenotypic changes during growth

Phenotypic changes during growth can limit attempts 
to reduce cycle times and/or breeding population sizes 
through early selection. Oil composition and concentra-
tion often change dramatically as a plant matures, making 
it hard to accurately select or cull progeny based on imma-
ture phenotypes (Coppen 2002). In some species, certain 
desired chemotypes may not even be detectable until plants 
reach a certain age. Doran and Bell (1994) studied the yield 
of monoterpenes in E. camaldulensis under glasshouse con-
ditions and found that leaves from 26 month old trees had 
42  % greater average cineole content than the same trees 
at 7 months of age, although ranking of the best and worst 
trees did remain consistent in this case. Barton et al. (1991) 
estimated that the narrow sense heritability of oil concen-
tration in E. kochii (Oil Mallee) was h2 = 0.83 for mature 
trees, but only h2 = 0.19 for 1-year-old juveniles highlight-
ing the difficulty in estimating the true performance of 
progeny at early stages using purely phenotypic measure-
ments. Similarly, in E. polybractea, maternal oil concen-
tration and oil concentration in young half-sib progeny are 
only weakly correlated, due to the large variation within the 
half-sib families (King et al. 2006). These findings caution 
against early phenotypic selection for oil concentration and 
composition as it may compromise final gain.

Improving selection efficiency with genomic 
selection

Marker-assisted selection techniques such as genomic 
selection (GS) are designed to tackle the issues discussed 
above by selecting individuals based on genotypic values 
rather than phenotypic values. GS has been shown, both in 
simulations and empirically, to provide improved selection 
efficiency compared to phenotypic selection (PS) and MAS 
(although this is not always the case—see Jannink et  al. 
2010). For poorly heritable traits in particular, GS has been 
shown to produce equal or larger gain than PS and MAS 
due to the greater predictive accuracy of GEBVs (Heffner 
et al. 2010; Resende et al. 2012a). On the other hand, sev-
eral studies have indicated that a single cycle of PS often 
outperforms a single cycle of GS. For example, in a simu-
lation for breeding in cassava, Oliveira et  al. (2012) esti-
mated that PS would produce gains 13–30 % greater than 

GS for various traits over a single 4 year cycle. Similarly, 
in an empirical study for the improvement of an index of 
yield-related traits in maize, Massman et al. (2013) showed 
that GS outperformed MAS, but produced lower gains for a 
single cycle than PS.

Despite some limitations in single cycle selection, GS 
consistently outperforms other methods in recurrent (mul-
tiple cycle) selection. Cycle times can be dramatically 
reduced with GS because markers can be genotyped from 
very young plants, so selection based on GEBVs can be 
performed without waiting for mature phenotype. By induc-
ing early flowering in selected individuals, the breeding 
cycle can be truncated (Grattapaglia and Resende 2011). 
The rate-limiting factor for reducing cycle time with GS is 
therefore the ability for early propagation, and achieving 
this is not necessarily straightforward in all essential oil-
bearing crops. In some Eucalyptus species, e.g. E. globu-
lus, chemically induced early flowering has successfully 
reduced cycle time by up to 50 % (Hasan and Reid 1995). 
In other Eucalyptus species, it is possible to graft juvenile 
cuttings onto established rootstock, triggering earlier flow-
ering in the juvenile genotype. In Melaleuca, there has been 
limited success with chemical methods (Doran et al. 2002), 
however, large variation in flowering time exists due to abi-
otic stresses (such as low winter temperatures). This effect 
can be exploited to reduce flowering time from 42 months 
to just 14 months (Baskorowati et al. 2010).

Although the actual gain per cycle may sometimes be 
lower with GS, the increased frequency of cycles serves as 
a multiplier that makes the GS approach more efficient per 
unit time than PS (see Fig. 1). This is particularly effective 
for perennial crops because of their long generation times 
(and hence long PS cycle times). In the earlier cassava exam-
ple, a reduction in cycle time from 4 to 2 years through the 
use of GS results in a predicted efficiency gain of 39–74 % 
for various traits compared to PS. For wood growth traits in 
various Eucalyptus species, it was predicted that reducing 
the breeding cycle length by 50 % would result in efficiency 
gains of 50–100 %, while reducing cycle length by 75 % (if 
possible) could see efficiency gains of up to 300 % (Resende 
et  al. 2012a). Wong and Bernardo (2008) predicted that 
genomic selection can shorten cycle time in oil palm from 
19 years to 6. In Malus × domestica (Apple), cycle time was 
reduced from 7 to 4 years resulting in over 100 % improve-
ment in gain per unit time compared to conventional pheno-
typic selection methods (Kumar et al. 2012).

Factors affecting GS accuracy in essential oil 
species

GS aims to use the information provided by genome-wide 
markers to model the additive genetic variance of a trait. 
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The markers carry two main forms of information that 
can improve predictive accuracy over traditional pedigree-
based methods such as Best Linear Unbiased Prediction 
(BLUP). Firstly, the additive genetic effects of markers that 
are in LD with QTLs can be used to build a model of the 
trait variance based on the genetic architecture of the trait 
itself. Secondly, the markers provide an accurate meas-
ure of relatedness between individuals in the training and 
breeding populations based on identity-by-state or identity-
by-descent of genotypes (Yang et  al. 2010; de Los Cam-
pos et  al. 2013). For example, in a pedigree two full-sibs 
are assumed to possess 50 % of common parental genetic 
material, however, due to random segregation of chromo-
somes during meiosis the real percentage may be signifi-
cantly lower or higher. Accurately capturing this Mendelian 
sampling effect results in a finer grained measure of just 
how related two individuals are (Habier et al. 2007, 2013). 
While information about relatedness breaks down rapidly 
with each generation beyond the training population, LD 
information can persist and is more effective for predic-
tions in individuals that are relatively unrelated to the train-
ing population (Habier et al. 2007).

The genome-wide scale of GS presents a modelling 
issue known as “large p, small n” (Jannink et  al. 2010), 
where the number of markers (p) for which effects are to 

be estimated far exceeds the number of individuals (n) for 
which there are data. This results in over-fitting of the data, 
redundancy and multicollinearity between many markers, 
and the inability to model the marker effects using multi-
ple regression by ordinary least squares. Aggressively cull-
ing the markers to a smaller subset containing only those 
with the largest effects often reduces the situation to that 
of MAS, forfeiting the inherent advantages of GS (Meu-
wissen et al. 2001; Moser et al. 2009). As a consequence, 
a range of modelling techniques have been designed to 
keep the advantage of including all or most marker effects 
while avoiding the ‘large p, small n’ problem (de Los Cam-
pos et al. 2013). Detailed comparisons of various genomic 
selection models, both simulated and empirical, are avail-
able at Gianola (2013), Heslot et al. (2012), Lorenz et al. 
(2011) and Ogutu et  al. (2012). They can broadly be cat-
egorized into two main strategies (Daetwyler et al. 2010): 
(1) BLUP-based methods (e.g. G-BLUP, RR-BLUP) that 
assume an infinitesimal model of genetic architecture, 
where all markers have effects drawn from a common nor-
mal distribution, though marker effects may be equally 
shrunken towards zero; (2) variable selection methods (e.g., 
Bayesian linear regression, LASSO, Elastic Net, machine-
learning methods) that relax the assumption of a com-
mon distribution of marker effects across the genome, so 

(a) (b)

Fig. 1   A schematic representation of breeding approaches based on 
either phenotypic (PS) or genomic selection (GS). Both a PS and b 
GS start with a cross between parental lines or natural populations, 
requiring N  years to reach maturity. After that, each cycle of PS 
requires P years in which to select, cross and grow the next genera-
tion to maturity. Each cycle of GS requires G years, but G is often 

much smaller than P since the breeding population can be genotyped, 
have GEBVs calculated, and be selected and crossed at a young age. 
Over multiple cycles C, the time expended for PS is N + CP, while 
the time for GS is N +  CG. Assuming similar gain per cycle from 
both methods, the gain from PS can be achieved in a much shorter 
time with GS
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that portions of markers have significantly larger effects, 
smaller effects or are not included in the model at all. Both 
strategies model the additive genetic variance of the trait 
as described by a population’s relatedness and LD (Habier 
et al. 2007, 2013; Zhong et al. 2009). However, their accu-
racies differ according the prevalence of each type of infor-
mation, which in turn are affected by a range of factors: (1) 
the genetic architecture of the trait in question, (2) extent 
of LD in the populations, (3) degree of relatedness between 
the training and breeding populations, (4) the size of the 
training population, and (5) the density of markers used for 
genotyping.

One measure of accuracy is defined by Daetwyler 
et  al. (2010) as the expected correlation between marker-
predicted genotypic value and true genotypic value (rgĝ), 
which can be estimated by the equation:

where N =  training population size, h2 =  heritability of 
selected trait, Me =  the number of independent chromo-
somal regions, or QTLs, underlying the trait in the popu-
lation. Equation 1 suggests that the accuracy of prediction 
improves with a larger training population, higher herit-
ability and fewer QTLs. These predictions were mostly 
borne out in a recent study of five populations of maize, 
wheat and barley (Combs and Bernardo 2013). Likewise 
as Me decreases, which occurs with increasing relatedness 
between individuals, accuracy improves (Daetwyler et  al. 
2013).

Below we examine how these factors might impact a 
genomic selection program for improving essential oil 
yield in perennial crops.

Genetic architecture

In GS, the additive effect of every genotyped marker on 
phenotypic variation is considered. The choice and accu-
racy of the GS model depends somewhat on the distribution 
of marker effects, which is ultimately tied to the number of 
QTLs underpinning the trait(s) and the distribution of QTL 
effects (Daetwyler et al. 2010). Understanding the genetic 
architecture of the traits under selection is highly important 
to the success of Genomic Selection.

Our understanding of the biosynthetic pathways that 
underlie terpene production is well-developed, and often 
a significant amount of variation in oil profile and concen-
tration can be explained by the genes in those pathways 
(Fig.  2). QTL analysis in E. nitens identified 45 loci that 
were significantly associated with a range of monoterpene 
and sesquiterpene traits, each explaining from 3 to 16 % of 
variance (Henery et  al. 2007). The authors noted that ter-
pene concentration in eucalypts may therefore be affected 

(1)rgĝ =

√

Nh2
/

(

Nh2 +Me

)

by relatively few loci of relatively large effect. Addition-
ally, QTLs for several phenotypically correlated monoter-
pene traits were clustered together, pointing to putative 
genes with impact on the monoterpene precursor com-
pound geranyl diphosphate, or perhaps regulatory factors 
for terpene synthase genes. QTL analysis also identified 13 
widely spread QTL regions associated with the foliar con-
centration of terpenes in E. globulus explaining up to 71 % 
of trait variance (O’Reilly-Wapstra et al. 2011). In Humu-
lus lupulus (Hop), linkage mapping and QTL analyses 
(Cerenak et al. 2009; McAdam et al. 2013) have revealed 
several large genomic regions of significance for total oil 
content, terpene concentrations (e.g. humulene) and bio-
mass (e.g. cone weight). Certain putative QTLs clustered 
together within a linkage group and were associated with 
multiple oil traits, possibly reflecting the presence of gene 
families from terpene synthesis pathways. Other QTLs, 
however, showed large and isolated effects on individual 
terpene compounds, suggesting the presence of regulatory 
factors involved in the latter stages of biosynthesis. The 
small sample sizes and low number of genotyped markers 
used in these studies suggests that estimated QTL effects, 
such as 20  % of total oil content variation explained, are 
probably exaggerated. Additionally the narrow phenotypic 
and genotypic diversity present in the mapping popula-
tions limited the range of potential QTLs to be discovered. 
Finally, the common practice of using the same population 
to both detect QTLs and estimate their effect size has been 
shown to cause upward bias on estimates of the effects of 
QTLs (Utz et  al. 2000). The majority of heritable pheno-
typic variation, not surprisingly, remains unexplained and 
would require genome-wide investigation in larger, more 
diverse populations.

QTL analyses have provided a low-resolution estimate 
of the location and effect size of major QTLs for oil traits. 
As a result, association studies in populations of the Myrta-
ceae family (which includes Eucalyptus and Tea Tree) have 
since focused on the specific genes involved in the syn-
thesis of terpenoids and their effect on quantitative varia-
tion in oil content and composition. Külheim et al. (2011) 
investigated genetic associations between SNPs in 24 can-
didate genes from biosynthetic pathways and quantitative 
variation in plant secondary metabolites in E. globulus. The 
study revealed 37 significant associations in 11 genes, each 
explaining between 2 and 6  % of phenotypic variation in 
19 oil traits. It should be noted that this study used a low 
density of markers so probably missed many QTLs, while 
the use of candidate genes and significance thresholds 
probably resulted in over-estimates of the effect sizes of 
associated QTLs. A candidate gene approach was also used 
by Webb et  al. (2013) to investigate pathways of genetic 
control of terpene concentration in a small wild population 
of M. alternifolia (Tea Tree). This study revealed that, in 
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addition to the relevance of individual genes within the ter-
pene synthase pathway (see Fig. 2), the coordinated regula-
tion of the precursor MEP pathway showed a strong and 
significant correlation with the concentration of the com-
mercially-important terpinene-4-ol (R2 = 0.87) in that spe-
cies. The strength of this result, however, must be consid-
ered in light of the small sample size (N = 48).

Teasing out the more elaborate or precise genetic archi-
tecture of oil traits requires going beyond QTL approaches 
to genome-wide association studies (GWAS), though 
difficulties persist. QTLs in plants have been shown to 

have varying estimated effect sizes from large (>10  %) 
to extremely small (≪1  %), with a skew towards smaller 
effect sizes (see Ingvarsson and Street 2011). The power 
of GWAS to detect a QTL is a function of effect size (a2) 
and LD (R2), so the smaller the effect of a QTL the harder 
it is to detect it (Hill 2012). When a trait is affected by a 
multitude of small-effect QTLs in a study population with 
short LD, then much of the genetic variation underpinning 
that trait may still remain unexplained—part of the classic 
‘missing heritability’ in GWAS and QTL mapping studies 
(Myles et  al. 2009). Additionally, few association studies 

Fig. 2   An overview of the enzymes involved in the monoterpene bio-
synthesis pathway and QTL that are associated with terpene concen-
tration. Total oil concentration appears to be influenced by the overall 
availability of photosynthetic precursors as input to the MEP path-

way, plus allelic variation at several points within the pathway. Varia-
tion at later stages, e.g., the terpene synthases (TS), mostly affects the 
ratio between individual terpenoids rather than overall concentration
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in forest trees have detected QTLs that explain greater than 
5 % of trait variation (Grattapaglia et al. 2012), though rare 
alleles which explain a greater percentage of the total trait 
variance may exist but go undetected due to the lack of 
power when the study population size is small.

Little is known about the genome-wide architecture of 
essential oil yield in natural populations (Webb et al. 2014) 
as the rapid decay of LD in many outcrossed perennial spe-
cies has made GWAS unfeasible until very recently. Zhu 
et  al. (2008) and Hall et  al. (2010) both presented lists 
of contemporary GWAS studies in plants, though none 
directly involved essential oil producing species, let alone 
any traits associated with essential oil production. Indeed 
most studies of the genetic architecture of oil concentra-
tion and biomass pertain to major commercial crops. Nev-
ertheless, these studies provide insight into the complexity 
of these traits in plants in general. For example, kernel oil 
concentration analysed in a large maize population is under 
control of at least fifty QTLs of estimated small and mostly 
positive effect, that account for ~50 % of genetic variance 
(Laurie et al. 2004; Li et al. 2013).

Variation in essential oil concentration is most probably 
controlled by several key QTLs within and near to terpene 
synthesis pathway genes with large effect (Fig.  2), plus 
a greater number of QTLs of small effect throughout the 
genome which are likely regulatory elements. For the esti-
mation of GEBVs, it may be prudent to consider model-
ling methods that distinguish these few well-characterized 
loci of larger effect from the many other unknown loci 
across the genome. A recent model, W-BLUP (weighted 
best linear unbiased prediction), was proposed by Zhao 
et  al. (2014) with the intent to treat specific markers of 
large effect known from prior association studies differ-
ently, while still simultaneously modelling the many minor 
unknown effects. W-BLUP aims to bridge the gap between 
MAS and GS and could be appropriate for GS for essen-
tial oil yield due to a priori knowledge of important QTLs 
in the terpene biosynthesis pathway. Another recent model, 
MultiBLUP (Speed and Balding 2014), clusters markers, 
or genomic regions, into partitions based on effect size, 
with each partition being treated as a different random 
effect. Since significant oil trait QTLs have been mapped 
in clusters within linkage groups, this may be an effec-
tive approach worth exploring further. Models that assume 
constant marker-effect variance across the genome, such 
as RR-BLUP, are probably more appropriate for biomass 
traits where the infinitesimal model is realistic. In review-
ing a wide range of GS models, de Los Campos et  al. 
(2013) noted that in empirical studies model choice often 
makes little difference to accuracy, but also noted that few 
studies to date have used natural populations with short LD 
in which case model choice is likely to carry more weight.

Linkage disequilibrium (LD) and marker density

The resolution of QTL discovery is a function of LD decay, 
and therefore LD is at the heart of marker-based breed-
ing techniques such as GS. Linkage disequilibrium refers 
to non-random association between pairs of loci, e.g., 
between two markers, between two QTLs, or between a 
QTL and a marker (Gupta et al. 2005). The intensity of LD 
between two loci is typically a function of the physical dis-
tance between them on a chromosome and the frequency of 
recombination in that region. Loci that are closer together 
and/or in a low recombination region have higher LD, 
since historical recombination events are less likely to have 
‘shuffled’ the common stretch of DNA that links them. It 
is recombination events that cause LD to decay over time 
within a population (Fig. 3).

When a marker is associated with a phenotype, it acts 
as a predictor for the surrounding chromosomal region that 
is in LD with that marker—we can infer that a causative 
QTL probably lies somewhere within that linked region. 
When LD decays quickly, the linked chromosomal region 
surrounding any given marker is short, and so many uni-
formly distributed markers are required to ensure that every 
segment of the genome is linked with at least one nearby 
marker. Therefore, the average genomic distance over 
which LD decays determines the density of markers that 
will be required in a genomic selection program in order to 
adequately model marker-QTL associations.

Strong LD between two loci is commonly consid-
ered to be R2 > 0.1 (Nakaya and Isobe 2012), though 0.2 
or even 0.3 are also commonly used (see Table  1). Calus 
et  al. (2008) demonstrated through simulation that the 
accuracy of GEBVs increased as the average LD between 
adjacent markers increased from R2 = 0.1 to R2 = 0.2, so 
for genomic selection it has been suggested that adjacent 
markers have LD of at least R2  >  0.1 or 0.2 (Massman 
et al. 2013). The reasoning is well described by Ersoz et al. 
(2008). A large effect QTL may explain, for example, 15 % 
of the phenotypic variation. A marker in LD with that QTL 
at intensity of R2 = 0.1 explains 10 % of the variation in 
the QTL, which in turn means that the marker itself only 
explains 1.5 % of the phenotypic variation. Therefore, the 
power to detect a QTL is a function of the effect size of the 
QTL and the strength of LD between the QTL and a nearby 
marker. Accordingly, GS accuracy increases with increas-
ing marker density until it eventually reaches a plateau 
when the genome is ‘saturated’ with markers that are in 
strong LD with all QTLs (Meuwissen and Goddard 2010; 
Combs and Bernardo 2013).

For the reasons above, the first step in an association 
study design is to assess the extent of LD in the study pop-
ulation (Myles et al. 2009) in order to determine how many 
markers are required. Much of the research on the extent 
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and distribution of LD has been reported in humans, ani-
mals and annual crop species, but there are examples in 
outcrossing perennial plants (Table 2).

In undomesticated outcrossing species, the LD between 
any two polymorphic markers typically decays rapidly with 
increasing genomic distance due to many generations of 
effective historical recombination in a large effective popu-
lation (Fig. 3). This is certainly the case in Eucalyptus and 
Melaleuca, which are often highly outcrossing in the wild 
(Grattapaglia and Kirst 2008; Myburg et al. 2014) and have 
large effective population sizes. The very short range of 
LD in essential oil-bearing species such as E. polybractea 
and M. alternifolia implies that GS for oil yield in progeny 

derived from naturally sourced progenitors would require 
a very high density of markers across the whole genome, 
possibly to a density whereby the causative SNPs them-
selves are genotyped. Eucalyptus polybractea has an esti-
mated genome size of 550  Mbp. Linkage disequilibrium 
likely decays within a similar distance to that observed in 
E. nitens and E. globulus (i.e., 100 bp) as the three species 
share similarly small geographical distributions and prob-
ably similar historical effective population sizes. There-
fore, at least 5.5 million genome-wide markers would be 
required to ensure adequate coverage across all regions of 
LD in the genome, and preferably more to increase power. 
Considering that the SNP density in E. globulus is about 1 

Fig. 3   A schematic depiction 
of the decay in linkage dis-
equilibrium (LD) in outcrossed 
populations over time. The 
decay is particularly rapid when 
there is a large effective popula-
tion size (Ne) as the effect of 
genetic drift in reducing allelic 
variation is diminished. LD can 
be lengthened through breeding 
with a small effective popula-
tion or inbreeding

Table 2   The extent of significant linkage disequilibrium (LD) in various perennial species including Pinus, Eucalyptus, Melaleuca and Vitis

a  LD is typically short and its decay can be determined by the mean distance (in bp) at which the pairwise correlation (r2) between markers 
drops below a threshold of significance

Species Significant r2 Distance (bp)a References

Picea. abies Unspecified 100–200 Rafalski and Morgante (2004), Heuertz et al. (2006)

Pinus taeda <0.2 1500 Neale and Savolainen (2004)

Pinus nigra <0.2 300 Chu et al. (2009)

Pseudotsuga menziesii <0.2 300 Krutovsky and Neale (2005)

Populus balsamifera Unspecified >750 Olson et al. (2010)

Eucalyptus globulus <0.2 200–500 Thavamanikumar et al. (2011), Külheim et al. (2011)

Eucalyptus nitens Unspecified Low Thumma (2005)

Melaleuca alternifolia <0.3 500–1000 Keszei et al. (2010), Webb (2015) (unpub)

Vitis vinifera <0.2 50–200 Lijavetzky et al. (2007), Myles et al. (2010)
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every 31 bp (Külheim et al. 2009), obtaining 5.5 m geno-
typed markers is biologically and technically feasible using 
current whole genome re-sequencing technology (though 
this says nothing of the cost of doing so in many individu-
als!), and could result in virtually the entire additive com-
ponent of the genetic variance being accounted for by the 
markers (Daetwyler et al. 2010).

The benefits of using whole genome SNP data for esti-
mating genetic breeding values, as opposed to less dense 
genotyping, were demonstrated in a simulation study by 
Meuwissen and Goddard (2010). Firstly, the accuracy of 
prediction doubled as marker density increased from 1000 
per morgan to 33,000 per morgan, irrespective of whether 
many or few QTLs were simulated for the trait. Secondly, 
the accuracy of GEBVs is likely to hold for many more 
generations since the markers for which effects are esti-
mated are so close to, if not actually, the causative SNPs 
for the trait. Thirdly, while reduced representation sequenc-
ing techniques such as Genotyping-by-Sequencing (GBS) 
can still generate large numbers of SNPs, there is a risk of 
missing major QTLs, especially if LD is short. For exam-
ple, Romay et al. (2013) used GBS for a GWAS of flower-
ing time in maize and found only one marker significantly 
associated with the most important gene associated with 
flowering time (ZmCCT). In other words, the GBS mark-
ers almost failed to detect a known major QTL, even with 
680 k SNPs genotyped in inbred lines. The rapid LD decay 
in the region surrounding ZmCCT was cited as a reason 
for the near failure to detect it, and many other unknown 
QTLs would have undoubtedly gone undetected. Similarly, 
Myles et al. (2010) used reduced representation genotyping 
to characterize the Vitis vinifera (Grape) genome and came 
to the conclusion that due to the presence of very short LD, 
progress towards GWAS and GS in grape would require 
whole genome sequencing to ensure association with most 
functional QTLs.

Relatedness and training population size

When the training and validation/breeding populations are 
closely related, much of the accuracy achieved with GS can 
come from the relatedness information carried by mark-
ers. The G-BLUP model, which uses markers to define a 
genomic relationship matrix to replace the pedigree matrix 
used in standard phenotypic BLUP, is often highly effec-
tive in this scenario (de Los Campos et al. 2013), and can 
be efficiently implemented with relatively low marker den-
sity and small training population size. Indeed this may be 
a straightforward approach for GS in Hop due to its long 
history of domestication. However, many other essential 
oil crops are largely undomesticated and little genetic relat-
edness exists in individuals sourced from natural popula-
tions. Here, information due to LD becomes the dominant 

component of GS accuracy (Habier et al. 2007), assuming 
a model that effectively estimates marker effects of vary-
ing size is used, thus compensating for the lack of relation-
ship information (Meuwissen and Goddard 2010). Conse-
quently a higher density of markers is needed to ensure all 
relevant QTLs are detected, particularly in populations with 
short LD [see “Linkage disequilibrium (LD) and marker 
density” for more detail]. As marker density increases, a 
larger training population is required in order to accurately 
estimate additional marker effects (especially those of rela-
tively small effect). In general, a larger training population 
results in increased accuracy of prediction (Zhong et  al. 
2009; Grattapaglia and Resende 2011; Lorenz et al. 2011).

Genotyping a very high density of markers has been 
a limitation for practical implementation of GS in out-
crossing, undomesticated tree populations (Nakaya and 
Isobe 2012). Beaulieu et al. (2014) were one of the first to 
assess the accuracy of GS in a large, diverse, undomesti-
cated population of outcrossing trees (White spruce Picea 
abies). Training and predictions were made both within 
and between half-sib families, with accuracies being sig-
nificantly lower in the latter as expected, but still higher 
than that of pedigree-based models. They recommended 
that for the time being, for most tree species, GS models 
should be trained and used within related populations in 
order to obtain high accuracies with limited marker den-
sity. For undomesticated species this issue can be addressed 
in the short term by increasing the relatedness within the 
study population through an initial breeding phase, which 
reduces the effective population size and lengthens LD 
(see Fig. 3), as demonstrated in Pinus taeda (Resende et al. 
2012b) and Eucalyptus (Resende et  al. 2012a; Denis and 
Bouvet 2013). These studies resulted in good prediction 
accuracy with only sparse marker coverage but the models 
are unlikely to work well in future breeding populations 
because relatedness to the training population declines rap-
idly per generation. With the decreasing cost of genotyp-
ing, GS may in future be performed with higher accuracy 
in undomesticated populations with greater allelic diversity.

Heritability (h2)

The accuracy of genomic selection is lower for traits with 
lower h2, though this can be improved if the training pop-
ulation size is increased, thereby keeping the Nh2 term of 
Eq.  (1) constant (Combs and Bernardo 2013). Neverthe-
less, for traits with low heritability, GS has been shown 
to produce equal or larger gain than PS and MAS due to 
the greater predictive accuracy of GEBVs (Heffner et  al. 
2010; Resende et  al. 2012a). Thus, GS is likely to be the 
best method for artificial selection on essential oil yield, for 
which the all-important biomass traits are often of low to 
moderate heritability.
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The method used for the estimation of the heritability of 
a trait may also have an effect on the estimated accuracy of 
GS. Downwardly biased estimates of h2 may occur if geno-
types are assumed to be independent when, in reality, they 
are correlated (Estaghvirou et al. 2013).

Selection for multiple traits with GS

Selecting for oil yield is, in reality, selecting for multiple 
complex traits, or a selection index formed from those 
traits. For example, in breeding for pharmaceutical grade 
Eucalyptus oil an index comprising total oil concentration, 
leaf biomass, % cineole, % undesirable compounds, family 
survival rate and other traits could be used.

Bernardo and Yu (2007) speculated that GS would out-
perform other methods for improving a selection index in 
maize comprising multiple traits, as there would be a large 
number of QTLs involved, many of which would be asso-
ciated with traits of low heritability. This prediction was 
borne out in a yield-based index of traits in maize (Mass-
man et  al. 2013) which resulted in significantly increased 
grain yield per hectare despite little improvement in each of 
the component traits within the index.

Three approaches may be taken for genomic selection 
of multiple traits: (1) estimate marker effects for each indi-
vidual trait and then form a selection index based on the 
weighted GEBVs of each trait (Resende et al. 2012a); (2) 
estimate marker effects for the index as a trait itself. (3) Use 
a multiple-trait genomic selection model (MT-GS) when a 
trait with low heritability is correlated with another trait of 
high heritability (Calus and Veerkamp 2011). A full com-
parison of these three approaches to selecting for essential 
oil yield requires further investigation.

Conclusion

Selection for complex quantitative traits has presented 
challenges to breeders that do not arise with more simple 
Mendelian traits. In plants, molecular assisted selection 
using small numbers of significant QTL has not proven 
particularly effective, especially in outcrossing species 
with little prior domestication. Genomic Selection, on the 
other hand, has shown great promise and could improve the 
breeding process in essential oil bearing crops. The highly 
complicated genetic architecture involved in oil yield traits 
may be most adequately detected and accounted for using 
whole genome re-sequencing and genotyping. Coupled 
with advanced modelling techniques, the gain per unit time 
using genomic selection could well outstrip traditional 
breeding practises, especially in perennials such as Euca-
lyptus, Tea Tree and Hop where the reduction in cycle time 
has the greatest impact on overall gain.
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